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ABSTRACT

[ A crack of length 2a which propagates with small, constant
speed through a viscoelastic strip of width 2b is considered7 The
strip is strained by displacing its shearfree edges. Linear theory
is applied.<The stress on the line of crack advancement and the
shape of the crack surface are calculated for a state of plane stress.] over

The stress intensity factor which is independent of material
properties is given as a function of a/b. It exhibits a maximum at
a/b = 0.75. For a/b > 1.5 the stress intensity factor becomes
essentially independent of crack length. The crack surface deflection
is obtained in the form of a superposition integral and is a function
of material properties and crack speed.

The energy which is released when the crack extends a small
distance is calculated. This crack energy depends on the crack
speed and involves the creep function of the material. A charac-
teristic length enters in the course of its derivation. This length
does not appear in the case of an elastic material and is considered
as an additional material property necessary to describe visco-
elastic crack propagation.

The energy conservation equation is established by consider-
ing a small control volume surrounding the crack tip. A relationship
emerges from this equation which implicitly gives a stable crack
speed as a function of applied strain, temperature, and material
properties. The creep function is the controlling factor in this

equation.




< The relevant material properties are discussed and presented
for a Polyurethane rubber (Solithane 113 ~ 50/50).7The lower bound
of the surface energy is determined from fracture tests on the
swollen material.<The results of the material characterization
are used to calculate the crack speed as a function of applied strain
and temperature. Good agreement is found to exist between theory

and experiment.
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I. INTRODUCTION

Historical Background

Hand in hand with the increasing application of polymers in
structural design over the last decade or two went a growing interest
in the fracture process in viscoelastic materials (1,2,3,4,5). Until
then fracture mechanics was mostly concerned with brittle materials.
Probably the most important concept put forth was Griffith's hypothe -
sis (6) of brittle fracture which was published in 1921, Based on the
principle of conservation of energy it yields a criterion for crack
instability., Mott (7), Berry (8) and others investigated the crack
kinetics by including a kinetic energy term in the energy balance as
established by Griffith. Several values for the maximum speed of
crack propagation have been obtained depending on the method of ap-
proach., Craggs (9) derived a value of 0.72 x shear wave speed for
this limiting velocity. The absolute maximum speed of propagation
for a crack which moves through a non-dissipative material and which
does not bifurcate is equal to the Rayleigh wave speed (10, 11). Ex-
perimentally determined maximum crack speeds however are often
considerably smaller than the theoretically predicted values (12).

A simplification of the energy method as initiated by Griffith has been
given by Irwin (13) and later Sanders (14) who showed that it is suf-
ficient to consider only the energy exchange in the immediate vicinity
of the crack tip.

The extension of the Griffith fracture hypothesis to the rup-
ture of rubber by Rivlin and Thomas (15) can be considered the first

major step into the field of viscoelastic fracture. They found that




a criterion apparently identical to the one by Griffith holds in this
case, too, However the tearing energy which enters in place of the
surface energy is not only a measure for the energy necessary to
create a unit of new surface but may also include the energy which
is dissipated by other processes like viscous dissipation and micro-
scopic tearing in a region surrounding the advancing crack tip.
Greensmith and Thomas (16) later found the tearing energy to depend
markedly on the rate of tearing.

Theoretical investigations of the crack propagation process
in viscoelastic materials have mostly been based on a global energy
conservation principle in which a term characterizing viscous energy
dissipation is included. Williams and Schapery (17) derived an
expression for the viscous dissipation on the assumption that the
material behavior is represented by a Voigt model. A small, un-
stable crack in the center of a large plate is predicted to grow
exponentially with time on the basis of this calculation. A limiting
crack velocity does not emerge from this theory. Williams (18) later
investigated a spherical cavity in an infinite viscoelastic medium
subject to uniform tension at infinity. He demonstrates that for a
step loading the creep function enters the corresponding Griffith
formula instead of Young's modulus. The creep function is evaluated
for the time which elapsed between load application and the beginning
of fracture,

A theory of defect growth on the basis of the theory of rate
processes was developed by Knauss (19). The typical rate dependence

of the ultimate properties in uniaxial tension tests is deduced from



this theory. Similar results are obtained by Bueche and Halpin (20)
by considering a thin filament at the front of the crack which is
assumed to be in a state of uniaxial tension and to behave in the same
manner as the bulk material does in this stress state.

More recently Willis (21) solved the dynamic problem of a
crack travelling through an infinite standard viscoelastic solid in
anti-plane strain. A relationship between applied force and crack
velocity is derived by application of a Barenblatt type fracture
criterion. This investigation shows that the crack motion is stabi-
lized by the presence of dissipation. The speed above which the
stabilization occurs is very high, however. Crack propagation
speeds which were measured in hard polymeric materials are about
an order of magnitude smaller than predicted by this theory. The
crack speeds in highly viscoelastic materials which have longer
relaxation times and exhibit a greater degree of relaxation will be
even smaller than in hard plastics.

To the author's knowledge all of the theoretical considera-
tions of the viscoelastic crack propagation process put forth so far
deal with infinitely large bodies for which the limiting crack veloci-
ties are either unbounded or very high. The experimental investiga-
tion (22) of a crack propagating longitudinally through a strip of
viscoelastic material however shows that there are very small,
stable crack speeds which cannot be predicted by existing theories.
The speed of crack propagation depends on the strain applied to the
strip and on the temperature. A theoretical investigation of the

fracture process in a viscoelastic strip seemed to be appropriate




and is attempted in this thesis. The results will also be helpful in
the understanding and interpretation of viscoelastic fracture in other
practical geometries which give rise to small, stable crack speeds.

Thesis QOutline

Instead of employing a global energy conservation equation
of the system Irwin's point of view is taken and a local energy balance
around the advancing crack tip established. In doing so one equates
the crack energy which is the energy released when the crack ex-
tends a small distance and the energy going into the creation of new
surface., The knowledge of the stresses just ahead of the crack tip
and of the crack opening close to the tip is necessary for the calcu-
lation of the crack energy. The effect of viscous dissipation in the
material will be reflected in the velocity dependence of the stresses
or of the crack opening.

The stresses and displacements on the strip centerline and
close to the tip of a crack propagating with constant speed through
a viscoelastic strip are calculated in part II of this thesis., Instead
of a strip which is strained by displacing its edges we consider the
for-our-purpose equivalent problem of a pressurized crack in an
otherwise unstretched strip. The edges of the infinitely long strip
are taken to be shear free for the sake of mathematical simplicity.
Clamped edges would be more realistic but the essential features
of the problem remain unchanged by this simplification.

The problem of a suddenly pressurized crack of constant
length is considered first. The correspondence principle can be

applied in this case and the solution to the associated elastic




problem is found by way of the Fourier transform method suggested
by Sneddon (23). The resulting Fredholm integral equation is solved
numerically. The stress intensity factor which is independent of
material properties in this geometry is given as a function of crack
length over strip width ratio a/b. This factor grows with increasing
crack length and reaches a maximum at a/b = 0,75, Beyond this
point it decreases slightly and becomes essentially independent for
a/b>1.5. The shape of the crack surface as a function of time due
to a step load is readily obtained by introducing the creep function
and inversion of the Laplace transformation of the solution.

The crack opening of a propagating crack is then determined
by superposition of solutions to step load problems with increasing
but individually constant crack lengths., The result of this operation
is a superposition integral, The same answer could have been ob-
tained by way of the so-called extended superposition principle which
was very recently suggested by Graham (24). For a constant velocity
crack with a/b > 1.5 the deflection close to the crack tip becomes
independent of crack size and hence independent of time. An ex-
pression for the crack opening in this region is then obtained which
is similar to the corresponding expression for an elastic material
except that the crack speed enters as a parameter. The crack energy
is thus readily calculated as in the elastic case because the linear
relationship between load and crack opening holds for the viscoelas-
tic material, too. A length which is designated as characteristic
length Aa enters the crack energy. In the case of an elastic material

this length disappears when the rate of change of the crack energy




is calculated. In the viscoelastic case however it enters along with
the crack speed into the argument of the creep function. This
characteristic length is viewed as an additional material property
which is necessary to describe viscoelastic crack propagation.

The expression for the crack energy is then substituted into
the energy conservation equation. A simple relationship between
crack speed, applied strain or load, temperature, and material
properties emerges from this equation. The creep function is the
dominating factor in this relationship. It is not necessary to resort
to a mechanical model for material behavior. The creep function
can be of any experimentally determined form.

The material properties which enter the theoretical relation-
ships are presented in part III for a Polyurethane rubber. The trade
name of this material is Solithane 113 and the particular composition
used here is Solithane 50/50 (cf. p. 49). The typical features of
viscoelastic materials are exhibited and are shortly discussed
together with the experimental methods employed for the determina-
tion of these material properties.

The measurement of the surface energy is difficult in
strongly viscoelastic materials. Crack propagation tests with
materials of this kind seemed to indicate that there is no lower
bound for the surface energy. In order to remove some of the un-
certainties in defining the lower bound of this energy use was made
of the fact that the internal viscosity of crosslinked polymers is
largely reduced in the swollen state. A short description of the

swelling properties of Solithane 50/50 is given together with some



polymer network characteristics which can be calculated from
swelling measurements. The swollen material is demonstrated

to behave in a neo~-Hookean manner. Crack propagation tests with
Solithane 50/50, swollen in Toluene were carried out. A lower
bound for the surface energy is seen to exist and is calculated from
the data obtained in these tests. A more detailed mechanical
characterization of the material can be found in (25).

Having determined all relevant material properties the
crack propagation speed is calculated as a function of applied strain
and temperature by application of the theoretical relationships de-
rived in part II. There is good agreement between the theoretical
results and the experimental data obtained by Knauss (22). The
characteristic length yielding the best agreement was found to
be 10—8 inches. The comparison between theory and experiment

is the subject of part IV of this thesis.




II. THEORETICAL INVESTIGATION OF A CRACK

MOVING IN A VISCOELASTIC STRIP

The relationships between crack propagation speed, applied
strain, or load, temperature, and viscoelastic material properties
will be derived for a particular geometry. The geometry chosen is
an infinitely long, thin strip with a central crack of length 2a. The
strip width is 2b (cf. Fig. 1). The strip is strained by displacing its
edges, and depending on the magnitude of this strain, €,° the initial
crack will remain stationary or begin to extend. The speed with
which the crack propagates is constant when the crack length exceeds
a certain value beyond which the stress field surrounding the crack
tip becomes independent of crack size.

The approach outlined on the following pages is not restricted
to a strip geometry. Plates with a small central crack are covered
in the present derivation because this geometry is approached as the
ratio of crack length to strip width becomes very small. The results
obtained from the investigation of the simple strip geometry are
believed to be descriptive of viscoelastic crack propagation in general
within the limits set by simplifications made in order to facilitate
the mathematical solution of the problem. In the course of this
development it will become apparent that very similar answers can
be expected for other geometries and loading conditions if stresses
and displacements close to the crack front are known.

The material properties needed in the following context are
the short-time or glassy modulus, Eg’ the long-time or rubbery

modulus, Er’ the creep function, Dcr’ and the time-temperature




shift factor, a

T* Viscous dissipation is assumed to be the only irre-

versible process in the material apart from the creation of new

surface during fracture. For a thorough mathematical and experi-

mental description of viscoelastic material properties see for instance
references (26,27,28,29) . Additional relevant material properties
for a particular viscoelastic material are also presented in part III
of this thesis,

In order to find the quantities which are of interest in this
problem we shall first derive the energy conservation equation for

a moving crack.

2.1. The Energy Conservation Equation

The explanation of fracture on the basis of the energy balance
of a cracked body was initiated by Griffith (6). Irwin arrived at the
same fracture criterion as Griffith via the calculation of the work
done locally at the crack tip during a small increase in crack length
(3). Later it was also pointed out by Sanders (4) that the energy
balance does not have to be established globally as in (6) and that it
is sufficient to examine a control volume surrounding the crack tip.

We shall now consider a cylindrical control volume, R, the
center of which is located at the crack tip. Its circular boundary
is denoted by L, see Fig. 2. Let us investigate the effects of a
small, virtual change Aa of the crack tip position. The contour L
will undergo a small distortion and the forces acting on it will do
work as a consequence of the increase in crack length. This work

is called external work and is denoted by W, A certain amount of




this work is dissipated within the volume R. This portion of the
energy will be called D and consists of the work Ds necessary to
create new surface, of the work DV required to overcome viscous
forces within the material, and of work going into plastic defor-
mation and other possible irreversible mechanisms. The motion
of material involves kinetic energy which will be designated by K.
The remaining energy is stored as internal energy U. The whole
process is assumed to take place isothermally. Taking the rates
of change of these quantities the first law of thermodynamics can

be cast into the following form
W=U+K+D, (2.1-1)

The dot denotes differentiation with respect to time,

Our attention is focused on viscoelastic materials and all
dissipative processes other than creation of new surface and viscous
dissipation will be neglected. We shall furthermore restrict our-
selves to crack propagation speeds which are small compared to
the shear wave speed based on the rubbery modulus. The kinetic
energy term may then be neglected. An inve stigation of high speed
viscoelastic crack propagation can be found in reference (30).

The energy conservation equation is thus reduced to
W=0U+D +D . (2.1-2)
s v

We shall now adopt Irwin's point of view (13) and calculate
the work which is released at the crack tip when the crack extends

a small, virtual distance Aa, This work will be called crack energy

10



and will be denoted by EC. A schematic picture of the stresses and
displacements close to the crack tip is given in Fig, 3. Because of
the symmetry of the geometry there are only normal stresses acting
in the plane of crack advancement.

Let us imagine that for a small distance Aa ahead of the
present crack tip the material is already physically separated but
still held in its criginal position by surface tractions. Figure 3
which shows the lower half of the crack tip illustrates this situation.
The unbroken line represents the original crack position. The sur-
face tractions acting along the imaginary cut from a to atAa are
also indicated. These forces are just large enough to hold the
material together along the center line. If the material along Aa
is now allowed to separate, then the work done by the surface trac-

tions in the course of this crack opening is given by (10, 13)
atAa
AE_ = ZS‘ %ny(é) ug (£-Aa) dE (2.1-3)
E=a

A state of plane stress and a linear relationship between crack
opening uy and tractions c%ly is assumed to exist. The latter is true
for an elastic material but holds also in the viscoelastic case to
be considered here because the crack speed is going to enter as
a parameter only as we shall see later,

There is no energy required to create new surface because
we imagined the material to be separated already., The energy
conservation equation for the same control volume R and material

considered previously reads now

11




W+E =U+D_ . (2.1-4)
C \'2

A comparison with equation (2.1-2) yields immediately

-E_=D_ . (2.1-5)

This is a greatly simplified statement of the conservation of energy
compared to the original form as given by (2.1 -2).

The energy dissipation caused by the creation of new surface
can be easily calculated with the help of the so-called surface energy
S which is the energy required to form a unit of new surface. It is
assumed to be independent of the rate of formation and is considered
a material constant, For a crack moving with constant velocity v

through a sheet of unit thickness one obtains then

DS=ZSV. (2.1-6)

The factor 2 enters here because an upper and lower surface is
created as the crack extends.

Only the normal stresses and the crack displacements in
the immediate vicinity of the crack tip have to be known for the
calculation of the crack energy Ec' Their evaluation will be the

subject of the next few chapters.

2.2. Formulation of the Boundary Value Problem

Basic Assumptions

The geometry under consideration is shown in figure 1. The

half crack length a(t) is a monotonically increasing function of time t.

12



A state of plane stress is assumed to exist in the strip at all times.
The crack surface is stress free and mathematically sharp in the
unstrained strip, Prescribed displacements in the y-direction and
zero shear stress are taken as boundary conditions on the strip
edges y = £b. The mathematics are considerably simplified by this
assumption without changing the essential features of the problem
as compared to the strip with clamped edges which should actually
be examined with regard to the real experiment. The kernel of the
integral equation to be derived is less complicated in our case and
in particular does not involve any material properties as would be
the case for clamped edges. The stress fields surrounding the
crack tip differ little for the two different boundary conditions as
can be seen from a study of (19 and (31).

No attention will be paid to transients. The crack is assumed
to propagate at constant speed into a viscoelastic material which is
in a state of long-time equilibrium far ahead of the crack., The
uniaxial stress in the uncracked strip is then given by the rubbery

modulus Er and by the strain €, on the strip, i.e.,
o =K € . (2.2-1)

The applicability of linear theory is assumed. The
original geometry and boundary conditions can then also be realized
by superposition of a uniaxial tension field o, and its corresponding
displacements with the stresses and displacements obtained by
solving the problem of a crack under internal pressure o, in an

otherwise unloaded strip.

13




Our interest is focused on the stresses and displacements in
the crack plane in the immediate vicinity of the crack tip. These
displacements are directly given by the pressurized crack problem
because the displacements resulting from the uniaxial tension field
are zero aty = 0. The stresses close to the crack tip have a well-
known singularity (32,33) which is entirely embedded in the solution
of the pressurzied crack problem. The contribution of the uniaxial
tension field to these stresses is negligibly small in the immediate
neighborhood of the crack tip. The two gquantities which interest us
can therefore be obtained from the investigation of the pressurized
crack problem alone.

Energy Dissipation in the Strip

The stresses in a given element of the strip increase during
passage of the crack front of a pressurized crack. The stresses in
the same element of a stretched strip with a moving unpressurized
crack would decrease however in the process. The question then
arises whether the amount of energy dissipated by viscous mechanisms
in the material is equal in both cases. This kind of energy dissipation
is governed by the rate of deformation, but these are the same in
both situations because the uniaxial tension field only contributes
constant displacements. An arbitrary loading or unloading history
can be made up from a sequence of corresponding step histories
since the laws of linear viscoelasticity are assumed to hold. Recog-~
nizing the equivalence of deformation rates and the validity of the
superposition principle it remains to be shown that the energy dis-

sipated by step loading is equal to the one dissipated by sudden
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removal of the load. Let us resort to a mechanical model for visco-
elastic behavior in order to be able to perform this comparison.

We select a three-element standard viscoelastic solid (33)
as a model, If a material of this kind is exposed to a step strain €,
at time t = 0 or suddenly relieved from a strain of equal magnitude
at this time the total dissipated energy per unit volume at time t = 0

is given in either case by

5 ZErt

= - _ - r

Dst €o 2E E T 1 - exp | E T )
g g m

r m
where 1 = viscosity of the dashpot element
- . . - E -E).
T relaxation time = 1/( g r)

In spite of the shortcomings of mechanical models they give an ade-
quate representation of the dissipation process in the context of this
argument. We do not have to restrict ourselves to mechanical
models in any of the following computations necessary for the deter-
mination of the crack energy.

The Boundary Value Problem

Because of the symmetry of the problem it is sufficient to
investigate the half strip with appropriate boundary conditions. The
crack is then represented by a section of length 2a(t) on the boundary
y = 0 over which the constant pressure o, acts. The remaining part
of this boundary has to satisfy the condition of zero normal displace-
ment and zero shear stress for all values of x. The other edge at
y = b has to satisfy the same boundary conditions, that is zero normal

displacement and zero shear stress, as would have been posed for
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the strip of width 2b. Figure 4 shows the geometry and boundary

conditions of the half strip.

Let s Eij’ and Gij denote the cartesian components of dis-
placement, strain, and stress, respectively. The field equations
for the linear quasi-static problem without body forces are then

(34) - in common index notation - strain displacement relationship

€..=2(u, . +tu .) (2.2-2)

g.. .= 0; O..=0.. . (2.2-3)

The constitutive equation for the material behavior is assumed to be

given in the form of a relaxation law

05 % €55 TG T T Chae

# dG2 s (2.2~4)
where the following definitions hold:

?

Stress deviator Gij = Oij - 61_]’ Okk

Wi+

. . P 1
Strain deviator eij = Eij 36:’Lj €1k

t
Convolution integral ®@*d = g ®(t—’r)%('r)d'r +®(t)Y(0).
0

6ij is the Kronecker delta. The material functions Gl and GZ as
well as stresses, strains, and displacements are functions of time
t and of the space variables in case of the latter quantities. The

boundary conditions to be satisfied by the solution of the field equa-

tions are
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ony=0: ny(x,O,t) =0 for Ix|l <
o—yy(x,o,t) = -0 for Ix] < af(t) (2.2-5)
uy(x,O,t) =0 for Ix! = a(t)

ony=hb: o_(x,b,t)=0
=y for x|l < oo . (2.2-6)
uy(x,b,t) =0

The initial condition is that the strip is completely undisturbed at

times t < 0,

A convenient method for the solution of problems in visco-~
elasticity is based on the so-called correspondence principle (34,35).
An associated elastic problem is obtained by applying the Laplace
transform to all equations describing the viscoelastic problem. The
time dependence is removed by this procedure and replaced by the
transform parameter. In principle, the problem can then be solved
by finding the solution to the associated elastic problem and inverting
this answer back into the real time space. This method is however
not applicable to mixed boundary value problems in which the parts
of the boundary over which specifications are made change with
time (36). The Laplace transformations of the boundary conditions
cannot be found in this case.

In order to circumvent this difficulty we shall first find the
time dependent stl;esses and displacements in the strip as caused
by a step loading o ony= 0, Ixl < a attime t = 0, where the length
a is a constant. For a growing crack, i.e., a time dependent length
a, the stresses and displacement are then determined by superposi-

tion of step loadings. This procedure is graphically indicated in
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Fig. 12 and is carried out in section 2.5.

The Step Load Problem

The Laplace transform method can be employed to find the

solution to this problem. Let us apply the Laplace transform

o0

T(s) = § £(t) e St at
0

to equations (2.2-2) through (2.2-6). Scaling the space variables

x and y at the same time by the half crack length a, i.e.,
=X =X -
E=7 and n=<, (2.2-7)

results in the following formulation of the step load problem in

transformed space:

€.=%@ .+tu ) (2.2-8)
ij i,j i

o...=0; o0..=0.. (2.2-9)
ij,] i i

Gij = s Gl eij Po0g =S G2 €k (2,2-10)

The boundary conditions are

on 1= 0: ng(§,0,5)=OaG for €]l <
Eyy(g,o,s) = - SO for £l < a (2.2-11)
u (£,0,s)=0 for l£l= a
y
b — b
= - (ga""s): O
UTE %xytra for 1€l <0 . (2.2-12)

Ey(é,g-, s)=10

These are the same equations as for an elasto-static problem with
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material constants

G=1sG

(2.2-13)

&=
11
I
Q
+
=l

Gl+2G2

G, E, and v are the shear modulus, Young's modulus, and Poisson's
ratio of the material in the associated elastic problem.

Making use of (2.2-13) the compatibility equation can be de-
rived from the definition of strain (2.2-8). It assumes the following

form:

82 2
¢ 2
ox oy

0 -
t =) (o Fo =0 . (2.2-14)

The equilibrium equations (2.2-9) can be identically satisfied
by means of the Airy stress function 2(§,n). In terms of this func-

tion the stresses are given by

-

|
»
»
» |o
jNPG‘IN

!
®
[N
HH

_ | (2.2-15)

<
<
®
wr
o

_ %3

Oxy 9E0m ] :

Substitution of the appropriate expressions into the compatibility

equation yields a biharmonic equation for &

4 4 4
vig-02,, 08¢ L3¢ _, (2.2-16)

agzanz on

We shall follow the Fourier transform method outlined by Sneddon in
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(23) for the solution of this equation subject to the boundary condi-

tions (2.2-11,12).

2.3 Derivation and Solution of the Integral Equation

The main steps by which the above problem is reduced to an
integral equation are now given. The Fourier transform will be

required. It will be denoted by an asterisk and is defined as

© . A
£(w) = -1 g £(£) 15 at
V2T Yoo
and its inverse as 1 (2.3-1)
w -
£(E) = 5 ) e 98 g4 .
V21 %Yo ]

Under the assumption of suitable properties of the Airy
stress function, ®, that is assuming that & and its first three de-
rivatives with respect to § go to zero as €| approaches infinity,
the Fourier transforms in the variable £ of equations (2.2-15) and

(2.2-16) are easily obtained. The stresses are now given by

% ]
XX anZ
= sl Y (2.3-2)
vy
I . 8§*
O = 1w —s5— .
Xy on
P

and the biharmonic equation becomes

. A 4. %
wds® | 202 2 @2 . 8 i =0 . (2.3-3)

o on
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The following expression for the displacement in the y-direction can
be derived on account of equations (2.2-8,10,13,15) and their Fourier

transformations:

+ = —— . (2.3-4)

"E’EY = -(2 + V)
The solution of equation (2.3-3) is
é*(w,n) = A sinh{wn) + B cosh(wn)
+ C wn sinh(wn) + Dwn cosh(wn) (2.3-5)

with the factors A,B,C,D being functions of w, loading, and strip
geometry alone. These four factors will now be determined for the

following boundary conditions:

Onn=0: oxy(w,O) = 0
o (©,0) = -P
yy( ) .
»  for lwl < oo (2.3-6)
b —% b
On n = 52 O'Xy((.».),-a-:) = 0
u (w,=) = 0 .
0.2) J

Pc stands for the Fourier cosine transformation of an arbitrary
pressure distribution p(§) which is an even function of £ however,

i.e.

0
P () =€S‘ p(€) cos(wg) A& . (2.3-7)
0

Knowing the stress function & under these conditions we can
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calculate the expression uy on the strip boundary n = 0. Inversion
of this quantity yields the normal displacement on this boundary and
in connection with the arbitrary pressure distribution p(§) one can
derive an integral formulation of the remaining boundary conditions
to be satisfied (2.2-11).

Applying equations (2.3-2,4,5) to the boundary conditions
(2.3-6) furnishes the following expressions for the factors A, B, C,

and D:

sinh(wb/a)

A=-D=C cosh(wb/a

P (v) sinh?(wb/a)
wZ wb/a + sinh(wb/a) cosh{wb/a) j

—

>  (2.3-8)

Substitution of these expressions into equation (2.3-5) and
subsequent employment of & (co 0) in equation (2.3-4) yields the
normal displacement u.y(w 0) in the transformed plane. After inver-

sion of the Fourier transformation this expression reads

5 w)smh (wb/a Jeos(wE)
§ 0) =— ‘/ S. dw .
§ol w[wb/a+ sinh(wb/a)cosh(wb/a)]

(2.3-9)
Now let
Pc(w) = w[l + m(wb/a)] H{w) (2.3-10)
with m(r)= e "sinh(r) (2.3-11)

sinhz(r)
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and equation (2.3-9) becomes

Joe)
uy(g,O) = _—ZE_— ‘[—72; ‘g H(w) cos(wt) d§ . (2.3-12)

Inversion of the Fourier transform of the second boundary condition

of (2.3-6) yields the traction on the boundary n = 0 to be
o)
Tyy(6:0) = \/%?: 5% §[1+m(wb/a)]H(w) sin(wf) A (2.3-13)
0

on account of (2.3-10).
A comparison of equations (2.3-12) and (2.3-13) with the
corresponding boundary conditions of (2.2-11) leads to the following

formulation:

8

H(w) cos(wE) dw= 0 for 1€l =21

=IIN

ao
[1+m(wb/a)] H(w) sin{wé)dw = —?9 £ for l&l <1 J

=1|N

0%8 ot

(2.3-14)

All boundary conditions will be satisfied if a function H(w) is
found which obeys this dual integral equation.

The first of equations (2.3-14) is identically satisfied (23) if
1

H(w)=S‘R(r)Jo(wr) dr (2.3-15)
0

with R(r) as a new unknown function. Substitution of this expression

into the second of equations (2.3-14) results in
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1 joo)
_S‘R(q)[‘gv Jo(wq)m(wb/a)sin(wé)dw—\ dg .

This is an Abel integral equation for R(r) if the right hand side of

the equation is considered a known function. The solution of this

equation is (37)

1
Z(r)+§Z(q) M(r,q) dqz‘/—g—- r (2.3-16)
0
where
5 [ee]
nur,q)=]4%) S‘wnﬂw)Johqa/b)Jomma/b)dw (2.3-17)
0

and where the following relationship holds between the old unknown

function R(r) and the new unknown Z(r):

Z(r) = — R(r) (2.3-18)

Equation (2.3-16) is a Fredholm integral equation of the second kind
for Z(r). It should be noted that none of the material properties
enter this equation for the boundary conditions considered in this

problem.

The standard form of the Fredholm equation of the second

kind is

1
f(r) - A S‘f(q) M(r,q) dq = g(r).
0

24




According to the theory of integral equations, e.g. (37), the solution
of this equation will be unique and continuous in the given interval if
the eigenvalues of the homogeneous equation are not equal to the
parameter A. In our case the parameter X is equal to -1. The
homogeneous equation cannot have negative eigenvalues if the kernel
M(r,q) is positive definite (37). It can be shown that the latter is
the case for our kernel as given by (2.3-17), This proof is carried
out for a very similar kernel in the appendix of reference (38).

Solution of the Integral Equation

A closed form solution of equation (2.3-16) cannot be obtained
because of its complicated kernel M(r,q). However an asymptotic
solution can be found for crack length over strip width ratios a/b which
are small compared to unity. The big plate geometry with a small
central crack is approached in the case of very small a/b ratios.
Apart from its usefulness for this geometry the asymptotic solution
will serve as a check for the numerical solution of the integral equa-
tion.

The function wm(w) approaches zero rapidly as w increases.
The Bessel functions in the integrand of (2,.3-17) which now contain
the very small parameter a/b in their arguments can therefore be
approximated by their series expansion for small arguments. The
following approximate expression is obtained for the product of

Bessel functions:

2
Jo(wqa/b) Jo(wra/b)g 1 - %(%) (r% qz) W2
4 2, 2
+—113(%) <r ;q +r2q2>w4+”. . 2.5.19)
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Substitution of this expression into equation (2.3-17) results in
individual terms which can be easily integrated in closed form

over the interval 0 <w< co. The kernel is then reduced to

2 .2 4 4
M(r,q)=r[(%) T @) et
6 6
+ () E%Z(r2+q2)2+...] : (2.3-20)

The method of repeated substitutions (39) can now be applied for the

solution of the Fredholm equation. The result of this procedure is

T wzaz 17r4a47+2r2
Z(r)=r§3 |1 - %’(72‘) 5 + i) ) ——
6 6 2 4 8
- %(%) (%) 83 + 32: + 6r ]+ O[(%) ] . (2.3-21)

The same answer up to terms of order (%)4 was obtained by Lowen-

grub (40).

A numerical method is the only way in which a solution of
equation (2.3-16) can be found for large a/b. The original integral
equation is reduced to a system of algebraic equations by writing
the integral in (2.3-16) as a sum (41). The elements of this sum
are calculated by dividing the interval 0 < r <1 into N segments of
equal length Ar and then applying some integration formula to each
segment. The trapezoidal rule was used in this case. Solution of
the system of equations by inversion of the coefficient matrix then
supplies the values of Z(r) at the points of subdivision.

The direct numerical evaluation of the kernel M(r,q) requires

very small steps in the integration scheme because of the rapid
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oscillations of the Bessel functions as their arguments get large.
Methods with the help of which time and accuracy can be gained in
the numerical evaluation of integrals of this kind are discussed in
(42). In the present case the integrand was approximated for large
arguments w by the appropriate approximations for the Bessel
functions and by neglecting small terms in the function wm(w). The
integration of this approximation can be easily performed exactly
over the interval 0 € w< oo. Rapid convergence of the numerical
scheme is then achieved by subtracting the approximate expression
from the original integrand and adding the integrated approximate
expression.

Equation (2.3-17) then assumes the following form:

[o9)
M) = om0, waa /o)1 ora/o)-Ale,0,00] a0t 1, a)
0 (2.3-22)
where A(r,q,w) denotes the approximate expression for the integrand

as w becomes large and I(r,q) stands for the integral of this expres-

sion. It is, in detail

1+2w 4b 1 L5 U
R Py — cos(wra/b - Z)cos(wqa/b -7

Ar,q,w) =
and

oo
I(r,q) = g Alr,q,w) dw .
0
The modified integrand of equation (2.3-22) rapidly approaches zero

as the integration variable increases thereby shortening the numeri-

cal procedure.
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The numerical solution of the integral equation was first
carried out by dividing the interval 0 < r <1 into ten equal parts.
In order to check the convergence of the results the number of
divisions was doubled. For a/b = 8 the first four significant digits -
and more as the ratio of a/b becomes less than 8 - were found to
agree in both cases. This agreement was considered good enough
and the interval size was not further decreased.

The results of the numerical solution are graphically rep-
resented in Fig. 5. The function Z(r) is smooth and monotonically
increasing in the interval 0 <r <1. It becomes a straight line of
slope V2/7 as a/b approaches zero.

As we shall see later, the behavior of stresses and dis-
placements close to the crack tip is dominated by the value of the
function Z(xr) at r = 1. The dependence of Z(1l) on the parameter
a/b is shown in Fig. 6. Z(1) approaches the value vZ/7 as a/b
tends towards zero. For a/b > 1.5 the values of Z(1) based on the
numerical solution of the integral equation become practically

indistinguishable from the values given by

Z(1) = ib‘a’ . (2.3-23)

In the interval 0.5 < a/b < 1.5 there is a small difference
between the numerical result for Z(1) and the value as given by
(2.3-23). This difference is too small to show up in Fig. 6 but it
becomes evident in Table I which contains values for Z(1) in the
interval 0 < a/b < 3.0 as obtained from the numerical solution,

from the asymptotic solution (2.3-21), and from equation (2.3-23).
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An interesting feature of the stress intensity factor and fracture cri-
terion in the interval 0,5 < a/b < 1.5 results from this small differ-
ence between the actual value for Z(1) and the value given by (2.3-23).
The ratio a/b was considered constant in the step load prob-
lem and entered only as a parameter. In the case of a moving crack,
however, the crack length 2a changes with time and the dependence
of the function Z on the ratio a/b will have to be considered. From
now on we shall therefore write Z(r,a/b).
Knowing the function Z(r,a/b) we can proceed to calculate

the desired quantities in the cracked strip.

2.4 Stress Intensity Factor and Fracture Criterion for an Elastic

Although of no direct impact on the development of the visco-
elastic problem, a few results which are of interest with regard to
cracked elastic strips will be derived in this section.

Making use of equations (2.3-15,17,18) and formally sub-
stituting the appropriate expressions into the Laplace transforms
of the displacements (2.3-12) and stresses (2.3-13) on the boundary

1 = 0 leads to the following equations

1
Zao
u, (£,0,5) = — \E—S‘ Zlr,a/bldr lE] <1 (2.4-1)
s E(s) ¢ ‘/rZ _ g2

a

o
o
E’qn(g’ 0,s) = - —OJ%‘S; w[l+m(wb/a)] cos(wf)

5 Z(r,a/b)Jo(wr)drdw,

OL/NJP—-

€|

\Y%
p—

(2.4-2)

where the integration formula
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[e0)

gJo(wr) cos{wg) dw = ! forr>§E>0
0

22

was applied in the derivation of equation (2.4-1).

Young's modulus E for an elastic material is not a function
of time and E(s) is simply replaced by E, a constant. The inverse
Laplace transforms of (2.4-1) and (2.4-2) are then readily written

down., They are

1
g
u;(x,0)= 92 -2 of 2 S‘ _Zlrsa/b) g , Ixl<a  (2.4-3)

\h:’?'—(x/a)2

1
Oyy(x’ 0) = _OOE g w1 +m(b/a)] cos(wx/a)§Z(r,a/b)Jo(wr)drdw,
0 0

x|l =za . (2.4-4)

Material properties do not enter the equation for the stresses
because of the shear-free strip edges considered in this problem.
The stresses given by (2.4-4) are therefore the same as for a visco-
elastic strip. The displacements on the other hand involve Young's
modulus and time will appear in the corresponding expression for a
viscoelastic strip. In order to make a distinction between the elastic
case and the viscoelastic one the superscript e was added to the
symbol for the displacement.

The results just arrived at are also valid for a crack moving
in an elastic strip as long as its speed of propagation is low enough
to safely neglect inertia terms.,

The normal displacements u}er(x, 0) of the crack surface in
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the neighborhood of the crack tip are shown in Fig. 7. The contours
presented there were obtained with the aid of the function Z(r,a/b)
and numerical integration of equation (2.4-3). The crack has a blunt
front the radius of curvature of which increases with increasing
crack length until it reaches a maximum somewhere between

0.5< a/b<1,5, Then the radius of curvature decreases slightly
and assumes an essentially constant value for a/b >1.5. The theo-
retical value for the crack tip radius will be given a few pages later
when the expression for the opening displacement close to the crack
tip is derived. Figure 8 shows the normal stresses in the crack
plane for two different a/b ratios. The stress distributions differ
but little in spite of a considerable increase in crack size. For

a/b > 1.5 the stress distribution becomes again essentially indepen-
dent of crack length. The familiar stress singularity at the crack
tip is also revealed in Fig. 8.

Stress Intensity Factor

Let us now consider the case of small a/b ratios. Under
these circumstances we can make use of the asymptotic expansion
for Z(r,a/b), (2.3-21). Substitution of this expression into (2.4-4)

and integration results in

a ﬂ‘z a 2 3 7T4 a 4
o (X,O)=0'O—-—————— 1 —%(—2-) (E) t3 &) &)

Yy [Xz_az

6 6 8
-11—9(%) () + 0[(%) ]}for (g—l)<<1, (2.4-5)

where use was made of the fact that m(u) is a rapidly decreasing

function. The product P(u) = u[l + m (u)] which assumes the value
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2 for u = 0 therefore approaches rapidly P(u) = u as u increases.
Employment of this asymptotic form makes the integration in closed
form possible.

It is customary to characterize the stress singularity by
means of a stress intensity factor. We shall use a nondimensional
stress intensity factor Kn which is defined as follows:

- = o (x,0)
K_ = lim Yy . (2.4-6)
n b o

X >a (o]

If the limiting process is carried out for ¢ Y(X, 0) one obtains

y
K (a/b) = Yo | 1 val @) 3t ey
22/P) = y3p )t -2 ) e &
6 6 8

The first term of this series corresponds to Inglis's solution for
the infinitely large plate with crack (32). The first two terms were
also obtained by Knauss (31) by a different method.

In order to get the stress intensity factor for ratios of a/b
greater than that covered by the asymptotic expansion we have to
resort to the numerical solution for the function Z(r,a/b) as depicted
in Fig. 5. Let us subdivide the interval 0 <r < 1 into N equal parts
as indicated in Fig. 9. Depending on the number of divisions the
function Z can be arbitrarily well approximated by a straight line

over each subdivision, that is

Zn(r,a/b) = An(a/b) + Bn(a/b)r for T <r < r
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An(a/b) = Z(rn_l,a/b) - Bn(a/b) r o

Z( ’a/b) - Z( :a/b)
Bn(a/b) - “n Tn-1

n n-1

and the subscript n indicates the nth subdivision.
The integral over r appearing in equation (2.4-4) can now be
represented by the sum of integrals over each subdivision. The

result of this procedure is

0 n=1 1
N
= _:L_ [Z(r ,a/b)J1 (or ) - Z(rn_l,a/b)Jl(mrn )
n=1
Jo (or ) T, (w )
+ 2A 2 3 2 Jom'“Thog z] . 48)
n T
m=1 n n-1

where the infinite series enters because of

O
S‘Jo(x) ax=2) T, ) .
m=1

Substituting (2.4-8) into equation (2.4-4) and performing the
w integration with the help of the same asymptotic behavior of

u[l+m(u)] for large u as discussed previously results in
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2m-1 ( T r
n . ( n-1 )
— 2m 5
m=1 £ y@2rd \Er &P
a a n a a n-1

(2.4-9)
The first term of this series tends towards infinity as x> a and
n = N. All other terms remain finite under all conditions because
x/azlandr_<1,
n
The stress intensity factor is easily obtained from (2.4-9) by

application of definition (2.4-6),

K_(a/b) = -]% Z(1,a/b) . (2.4-10)

It is seen that the behavior of the stresses in the immediate vicinity
of the crack tip is characterized by the value of the function Z(r,a/b)
at r = 1. If one substitutes the asymptotic expansion for Z (2.3-21)
into (2.4-10) there results the stress intensity factor obtained from
the asymptotic expansion by different means (2.4-7).

The stress intensity factor for arbitrary values of a/b is
plotted in Fig. 10 together with its values as given by the expansion
for small a/b ratios and as given by the Inglis solution. It is seen
that the asymptotic expansion for Kn(a/b) holds up to a/b = 0.35

whereas the Inglis solution is only applicable up to a/b=0,1.
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An interesting feature revealed by Fig. 11 is the maximum
of the stress concentration factor at a/b = 0.75. At this point Kn
is about 1.5% higher than the constant value it assumes as a/b - oo,
The consequence of this behavior with regard to crack propagation
is discussed later in connection with the fracture criterion. For
a/b > 1.5 the stress intensity becomes practically constant and

assumes the value

This result agrees with the value obtained for a semi-infinite crack
by means of an energy consideration as described in reference (43).

Failure Criterion

The crack displacements close to the tip are found in a way
similar to the one which was taken to determine the normal stresses
in this region. In this case, however, it suffices to approximate
Z(r,a/b) by a straight line segment close to r = 1 because the inte-
gration which is to be carried out, see (2.4-3), ranges over the
interval x/a < r <1 where (1 -x/a) << 1. The result of this operation

is

ue(x 0) = O—O =3 VE———E a Z(1,a/b)
y 3 E ﬁ_ a H)
for (1 - g) << 1 (2.4-11)

Based on this equation the radius of curvature pe at the crack tip

is easily calculated to be
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g 2
(—E(—’-) z%(1,a/b) . (2.4-12)

ERYed

p°(a/b) = a

Knowing the stresses and displacements close to the crack tip
we can now proceed to determine the crack energy. Substitution of
(2.4-11) and of the stresses as found with the aid of (2.4-10) into

equation (2.1-3) yields
2

AES(a/b) = -27 42 K(a/b) bAa (2.4-13)

where Aa denotes a small virtual crack advancement.

A stationary crack becomes unstable when the energy re-
leased during a small increase in crack length Aa as given by the
crack energy is greater than the energy necessary to create the
new surface. This condition is expressed by equation (2.1-5),
However dealing with a virtual crack motion we replace the time
derivative by the derivative with respect to a. The instability

condition thus reads

e

AE AD
& x5 (2.4-14)
Aa Aa
With ADS=2 SAa and equation (2,4-13) one obtains
Gi 2
+ Kn br=S . (2.4-15)

The critical load at which the crack becomes theoretically unstable

is thus given by

O i :‘[SEZ ) (2.4-16)
O Crit. 7TbKn
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This is the equivalent of the Griffith criterion which also gives the
critical load for an infinitely large plate with crack under uniaxial
tension (6). For that case one substitutes the value for the stress

intensity factor as a/b-0 and

YA
o ., =
o crit. ra

which is, as expected, the Griffith criterion for an infinitely large
plate with pressurized crack of length 2a under plane stress condi~
tions (44).

Figure 11 depicts the critical load as a function of a/b. Note
the steep slope of this curve as a/b approaches zero. The conse-
quence of this behavior is a very high acceleration rate for an
unstable crack with an initial length such that a/b< 0.1,

The small minimum in the critical load at a/b =2 0.75 reflects
the maximum in the stress intensity factor at this point, This mini-
mum means that a crack with an initial value of a/b in the neighbor-
hood of a/b = 0,75 could extend a short distance and then come to

rest again if the critical load o, for the particular initial crack

crit
length was carefully approached, that is if

2ES
< <
% crit.min. _ Co crit. b '
The upper bound of this inequality is given by the essentially constant
critical load for a/b > 1,5. No experimental dataare available against
which this particular conclusion could be checked.
The other consequence of the minimum in the critical load

with respect to a propagating crack with initial length such that
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a/b < 0,75 is a deceleration of the crack after passage of the mini-
mum. This deceleration period will last until the crack length is
large enough, i.e., a/b > 1.5, to have the critical load remain
constant with increasing crack size., This result agrees well with
an experimental crack acceleration history presented in Fig. 11 of
reference (19). This curve shows a velocity maximum for a crack
length which corresponds to roughly a/b = 1. This particular

behavior was as yet unexplained,

2.5. Crack Tip Displacements and Crack Energy for a Crack

Propagating in a Viscoelastic Strip

The expressions for the stress intensity factor as derived
in the last chapter for an elastic strip are directly applicable to a
viscoelastic strip subject to the same boundary conditions. The
displacements however will become functions of time which enter
through the time dependent material properties.,

Crack Tip Displacements

The Laplace transform of the normal displacements of the
crack surface is given by equation (2.4-1) for a step load o applied
at time t = 0 and for constant crack length 2a. The inversion of
this expression is easily accomplished by introduction of the creep
function Dcr(t)' The Laplace transforms of the creep function, of
the relaxation function Erel(t)’ and of the time dependent Young's

modulus are related as follows:

D __(s)= L S— . (2.5-1)
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The equation for the crack displacements in x,y,t-space then be-

comes
1 \
w(x,0,t)= 2a ¢ D (t)‘}—% g‘ Z(xs2/b) g, (2.5-2)
y o cr ™ >
x/a 2 x
r - —
a
lel<a.
or wWi(x,0,t) =D (t) E u'(x,0) (2.5-3)
yX, > - cr YX, ) e R

The superscript v was introduced to distinguish this result from
the corresponding expression for an elastic strip. E is a con-
stant and stands for the Young's modulus of the material for which
the elastic displacements u; were calculated. It is seen that the
time dependence of the displacements is completely contained in
the creep function Dcr(t) which is found by inversion of (2.5-1).
The determination of this function will be discussed in part III of
this thesis.

The response to an extending crack can be made up from
a sequence of step loadings. For instance, at time t = t, 2 boundary
segment of length 2a = Zao is loaded. A short time later at
t=t >t the segments a, > lal = a, are loaded stepwise, etc,
This scheme is illustrated in Fig. 12. By virtue of the first of

equations (2.5-2) one thus obtains the following series for an

extending crack with a = a(t):
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1

u;p(X,O,t) = ‘/—Trr?oo aOS\
x/a Vrz—(x/ao)2

Z(r,ao/b)

dr Dcr(t—to)

1 Z(r,al/b)dr 1 Z(r,ao/b)dr
421 S‘ — -3 -————-————} Dcr(t—tl)
x/al \/rz—(x/anl)2 x/ao \h‘z—(x/ao)2
T oceernnnne . (2.5-4)

where the additional superscript p was introduced in order to indi-
cate that we are now dealing with the response to a propagating
crack. The sum in this equation is replaced by an integral if the
number of steps is imagined to approach infinity whereby the time
difference between consecutive loadings tends towards zero, i.e.,
to-t 7 0. Assuming the crack to have zero length at time t = 0

equation (2.5-4) then reduces to the following convolution integral:

t 1
u‘;P(X,o,t) = g% {2 2 o alr) g Z(r,a(7)/b) dr }Dcr(t"r) dr
0

™ O
x)a(TWr-(x/a(r)*

or (2.5-5)
t
u;p(x,O,t) = E gaﬁ; {ufr(x,O,a(T))}Dcr(t—T) dr .
0

The elastic displacement u$ becomes a function of time through the

crack length 2a(t).

Partial differentiation yields the time derivative of the elastic

displacement to be
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9 e _ da(t)
57 Uy ke 0halt) = 2 S (2.5-6)

Differentiating equation (2.4-3) with respect to the half crack length

a and using integration by parts leads to the following expression:

1 oz
ou’ o =—(r,a/b)
A 2 "o Z(1,a/b) —a da dr

da T E S ——
\/l—(x/a)2 x/a\/ rz—(x/a)‘2

YA
Z(r,a/b)—r H(r,a/b) <
+ dry . 1- Zl<1. (2.5-7)

x/a V rZ—(x/a)2

The function Z(r,a/b) and its derivatives with re spect to r or a are
all well behaved and the integrals in equation (2.5-7) give rise to
finite terms for all values of 0 < x/a <1l and 0 <r <1. With re-
spect to the determination of the crack energy we are only interested
in the displacements in the immediate vicinity of the crack tip where
1 - E‘-l << 1. The terms given as integrals in equation (2.5-7)
become negligibly small compared to the first term in this case.

We thus obtain for 1 - ,2, <<1

8ue

o
-2 oy e
da J= E - x Z(1,a/b)

or by virtue of (2.4-10)

[0
b ,EB‘/ 2 K_(a/b) . (2.5-8)

Combining this expression with equation (2.5-6) and substituting

-

into the second of equations (2.5-5) results in
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'C
vp a(T) 3a( )
uY {x,0,t) = 200 § AGES (—————) Dcr(t-”r) dr
0
fOI' 1 - I—éT}é—)—l <<1 ° (2'- 5'9)

Restricting ourselves to cracks with constant speed of propagation

v we have
at) = vt .

With the constant velocity assumption and the change in variable
{=vt

equation (2.5-9) can be simplified to the following form:

a—
t
Y(xOv—Zo S‘J §’/b o) at

for 1 - |Z|<<1 (2.5-10)
“t

where a, = v t stands for the crack length at time t. The lower limit
x appears because u;p = 0fort< —;—{- .
The stress intensity factor Kn changes only little with § be-

cause 1 - If—l << ] and x € <a,.

¢ For at/b > 1,5 it becomes essen-

tially independent of crack length, see Fig. 11. Limiting our

consideration to cracks for which at/b > 1.5 we can thus write
$y - L
A

and equation (2.5-10) reduces to
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2t a, -
‘} b t
g‘ ¢ -x Dcr( v ) dg

x

a
vp _ __g
uy (x,0,v) = 200 Kn(b)

for 1 - |Z|<<1 . (2.5-11)
e’

The displacements in the neighborhood of the crack tip as a
function of crack propagation speed are shown in Fig. 13. The creep
function employed in this numerical evaluation of equation (2.5-5) is
discussed in partIilof this thesis. The contours shown in Fig. 13
give the impression that the crack tip becomes sharp when the crack
propagation speed is different from zero. The very tip is, however,
still blunt. But its radius of curvature is considerably smaller than
in the zero velocity case because of the generally large difference in
the order of magnitude between the glassy modulus and rubbery
modulus. For the material on which Fig. 13 is based the ratio be-
tween these two moduliis 1.5 x 102. The change in curvature
associated with this change in material properties can be calcu-
lated with the help of equation (2.4-12); it amounts to roughly 2x104.

Crack Energy

The two quantities which are necessary for the calculation
of the crack energy of a crack propagating in a viscoelastic strip
, are now available, Let us assume that the creep function is given

in terms of a retardation spectrum L(t), that is (26)
Joe
1 dr »
Dcr(t) = -E—; —g L(7) exp(—t/’T) - . (2.5-12)
0

Substitution into equation (2.5-11) leads to
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a QO
a -¢

a t
u;/;p(x,O,v) = ZGOKH(—Et-) S‘\JE—E)EE-E% - S‘L('T)exp(- tT dr + d¢ .
0

X

(2.5-13)

The order of integration may be interchanged, the inner integral can

then be evaluated resulting in

a, -xX e
a L) 2]
vp _ BN el B SN WP T 0 z '
ug (x,0,v) = ZGOK(b)Vat x 3Er S T (1;2;v+1) de
0 v=0

(2.5-14)
where (1;2;v+1) = 1x3%x5 .....(2v-1) x (2v+1).
Substituting equation (2.5-14) and the stresses close to the crack tip
as characterized by the stress intensity factor (2,4-10) into equation
(2.1-3) yields

Aa oo —Z)V vii
e VP_ 2 ibg 1 .’Aaf{ S‘L T) (o7 (Aa-?¢) ar lae .
0

)
n
I‘

0
(2.5-15)

The order of integration can again be interchanged and the inner

integral be evaluated. One thus arrives at

o 0 v+1

Aa
AEYP = _ 20K% bg Sﬂ E 22l agr ),
C n° - (v+l)'

(2.5-16)

As far as the energy balance of a moving crack is concerned we are

only interested in the rate of change of the crack energy. With the

approximation o AEVP

c dAa

and for constant crack speed v one obtains
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P = 2w K] oL bV{EL § L) exp (- B2 d'r} (2.5-17)
T
0

where the infinite series in (2.5-16) has been summed out after dif-
ferentiation. The bracketed term in (2.5-17) is the value of the
Aa

creep function at time t = -~ The rate of change of the crack

energy can thus be written as

EP = 2r K2 6% by 202 D (A2
c n o T cr vamq

. (2.5-18)

The temperature dependence of the creep function was additionally
introduced in this equation. DCr is now the creep function at absolute
temperature T = 273°K and ap is the time-temperature shift factor
with respect to this temperature (45). The factor 2,17,—3 enters on the
assumption that the temperature dependence of the modulus as pre-
dicted by the classical theory of rubber elasticity is also applicable
for the creep function.

Equation (2.5-18) gives the crack energy as a function of
material properties expressed by the creep function, as a function
of crack propagation speed, temperature, and applied load. The
length Aa is some kind of characteristic length a possible physical
interpretation of which will be discussed in part IV of this thesis.

It will be viewed as an additional material property necessary to

characterize crack propagation in a viscoelastic material.
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2.6. Relationships between Crack Propagation Speed, Load, Tem-

perature, and Material Properties

The energy conservation equation (2.1-5) has to be satisfied
for a propagating crack. The rate of change of energy dissipated by
the creation of new surface is given by equation (2.1-6). Substituting
this expression and the one for the crack energy as given by (2. 5-18)

into equation (2.1-5) results in

TrKi(a/b)csbv—z—ED A2)-sy

T cr vag * (2.6-1)

This equation has two solutions:
1. The trivial solution v = 0.

2. A velocity which is given implicitly by the condition

Aa 1 1 S T
( ) = = . (2.6-2)
cr ‘vamg by bﬁi Krzl(a/b) 273

The fracture criterion based on the rubbery modulus Er = l/Dr of

the material is given by

‘/ SE_T
o . = . (2.6-3)
ocrit. T b K:‘l(a/b)273

In order to allow the crack to propagate the applied load o, has to

corresponds to an

be greater than o . The case 0_ =
o o

. o .
crit. ocrit.

unstable equilibrium state. Let us write

o ocrit, (2. 6-4) .

where n> 1.

46




The factor n will be called load factor. Equation (2.6-2) reduces to

the following form by virtue of this factor

. (2.6-5)

The load o, which has to be applied in order to enable the crack to
propagate with constant speed v is given by this equation provided
all the material properties entering it and equation (2. 6-3) are
known.

Liet us now consider two different loads 001 and 002 which

are applied at equal temperatures. The relation between these loads,

respectively strains, and the corresponding propagation speeds is

easily derived from (2. 6-5), it reads

Aa
(ot
€02 002 cr vlaT
—— = —— = —'———Aza'v—' 'Y (2.6_6)
€o1 901 D__{==—)
Ccr VZ T

A similar relationship between strains and temperatures can be de-
rived for a fixed crack propagation speed. The following equation

holds in this case:

Aa
€92 %92 T1 B 1 Tcr vaTl
e = , (2.6-7)
01 01 2 T2 Dcr 5 )

vare

where the elastic modulus is assumed to be directly proportional to
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the absolute temperature (46).

The validity of these surprisingly simple relationships will
be tested in part IV of this report. Experimental data will be com-
pared to the predictions made on the basis of these equations and
of the material properties for a particular polymer which will be

presented in part III.
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III. MECHANICAL CHARACTERIZATION OF SOLITHANE 50/50

The experimental determination of the material properties
entering the relationships derived in part II will be described subse-
quently for a Polyurethane elastomer of the type used as a solid
propellant binder. This material is commercially produced by the
Thiokol Chemical Corporation and carries the trade name Solithane
113. A so-called Urethane Resin and Catalyst (manufacturer's desig-
nation) are the two components from which Solithane 113 can be rela-
tively easily produced in the laboratory. Chemically the "Resin" is
a trifunctional isocyanate which is the product of a reaction between
Castor Oil and Tolylenediisocyanate (TDI). The "Resin" is liquid and
chemically stable at room temperature. Urethane crosslinks are
then introduced between the "Resin" chains by adding the "Catalyst"
and curing the mixture at an elevated temperature, The "Catalyst"
is a triol and consists essentially of Castor Oil. The "Resin-
Catalyst" mixture flows easily and can be cast into molds without
great difficulty. The "Catalyst" used for the production of Solithane
113 is Thiokol Urethane Resin Catalyst C113-300 and the "Resin" is
Thiokol Solithane 113 Urethane Resin., The curing temperature is
165°C.

For the purpose of this investigation the material was cast
into 12" x 12" sheets of 1/10" or 1/32" thickness. Ferroplates,
which are normally used for the production of glossy photographic
prints, served as mold surfaces and assured a high surface quality.
The sheets were stored in a dry box after completion of the curing

process of 13 hours at 165°C. Specimens with the desired
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dimensions are easily cut from the sheets with the aid of a razor

blade or similar tool. More information on the chemical aspects

and the synthesis of Polyurethanes can be found in reference (47).
A detailed description of the manufacturing facility in the GALCIT
laboratory is given in (48).

Solithane is one of the contenders in a program conducted
for the purpose of selecting a suitable standard viscoelastic material
which would facilitate the compilation of experimental data and
would provide a common test material for theoretical results in
the field (49, 50). One of the advantages of Solithane is that the
material properties can be changed over a wide range by varying
the "Resin" to "Catalyst" ratio (25). The composition used for
the present work is equivoluminal, that is equal volumes of "Resin"
and "Catalyst" go into the final product, and will be designated
as Solithane 50/50, Great care was taken in the production of the
material in order to minimize the variation of material properties
from batch to batch. A certain amount of scatter is, however,
unavoidable and a quick mechanical characterization of each batch
was carried out. The real and imaginary part of the shear modulus
were calculated for this purpose from the time record of free
torsional oscillations as measured with the help of a torsion pendu-
lum (49). A deviation of +5% from the mean was considered per-
missible and all other batches were discarded.

All the experiments to be described on the following pages
were performed in a standard Instron testing mechine. This

machine has constant extension rates ranging from 0,02 to 20.0
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in/min and an automatic load and extension recorder built in. Tests
at different temperatures were run with the aid of a temperature

chamber which enclosed the test section of the Instron tester.

3.1. Uniaxial Stress-Strain Behavior

Some of the typical features of viscoelastic materials are
exhibited in simple uniaxial tension tests. The classical theory of
rubber elasticity predicts the following relation between stress

and extension ratio (46)

2

o=2C (A-\7) (3.1-1)
where Cl = temperature dependent material constant
N = extension ratio=1 + €.

Equation (3.1-1) is based on the statistical theory of polymer net-
works and the following main assumptions are made in the course
of its derivation:

a. The chain length distribution is Gaussian,

b. the chains are completely flexible, there are no chain
entanglements, loose ends, etc.,

c. the internal energy does not change during the defor-
mation, that is the network elasticity is entirely an
entropy effect,

d. the deformation is affine.

The above stress-strain relationship for uniaxial tension corresponds
to a stored energy function which involves only the first strain invar-

iant, i.e.,
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Wl = C1 (Il - 3) (3.1-2)
where
_ 32 2 2
Il = )\1 + )\2 + )\3

A material with this strain energy function is called a neo-Hookean
material.

The response of most elastomers is not adequately described
by equation (3.1-1) however. Mooney (51) and Rivlin (52) improved
the agreement with experimental data by including the second
strain invariant in the simplest possible way. The strain energy

function reads in this case

W, =C, (I - 3) (3.1-3)

2 1 —3)+C2(I

1 2

where

I,=XA X

2.2 2.2 2.2
RN T R e B T
This equation characterizes a so-called Mooney-Rivlin material.
The stress-strain law for uniaxial tension of a material of this kind

becomes
0=2(C, +Cy/N) (\ - N (3.1-4)

The two constants C1 and C‘2 can be easily determined by repre-
senting experimental data in the form of a Mooney-Rivlin plot. The
quantity 0/()\—)\_2) is plotted versus 1/\ in this case and a straight

line results if the material obeys equation (3,1-4). The constants
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are then readily calculated from the values at which the straight line
intersects the normals on 1/A = 0 and 1/\ = 1.

The Mooney-Rivlin plot is a convenient method of represent-
ing stress-strain data for elastomers because deviations from any
of the two simple constitutive equations just discussed become
immediately apparent.

The uniaxial tension tests with Solithane 50/50 were per-
formed on ring specimens with an inner diameter of ca. 0.65", an
outer diameter of ca. 0.75", and with a thickness of 0.1", These
specimens were cut from 0. 1" thick sheets with the aid of a special
rotating cutting tool. The surfaces cut with this tool were not of
the same high quality as the surfaces of the cast sheet but visual
inspection of each specimen guaranteed a good degree of uniformity
and helped to single out faulty specimens before the test was run.
The dimensions of each ring were also measured with an optical
comparator and the ring cross-section was calculated from the re-
sults of these measurements.

During a test a ring was stretched by two pins of 0.4"
diameter which were separated at a constant rate. These pins were
greased with Vaseline in order to lower the friction between the
specimen and the pin during extension. It was found by Smith (53)
that there is good agreement with stress-strain curves obtained
from experiments with conventional dog-bone shaped specimens if
the strain in the ring specimen is based on the inner diameter of

the unstretched ring. That is
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¢ = 2Al (3.1-5)

where Al = distance the pin traveled

Di = inner diameter of the ring specimen,

The stress is calculated by dividing the force exerted on the pins by
twice the cross-sectional area of the undeformed ring.

The results of these measurements for Solithane 50/50 are
presented in Figs., 14, 15 and 16 for three different temperatures
and ten different strain rates ranging over 3 decades, Itis
seen that for a temperature of 40°C (cf. Fig. 14) the material
behaves very much like a neo-Hookean material, There do not
seem to be any strong rate effects present because the data for all
tested strain rates fall very close to a horizontal straight line.
Only for small strains is there a considerable deviation which is
partly blamed on some initial slack in the recording mechanism,
however.

Asgs the temperature decreases we find a marked increase
in the stresses prior to failure, cf. Fig. 15 for a temperature of
20°C. This upswing is most pronounced for the highest strain
rates. Rate effects obviously come into play at this temperature.
Up to strains of about 100% the material response is still close to
being neo-Hookean for all strain rates tested.

Figure 16 shows the Mooney-Rivlin plot for a temperature
of -5°C, The strain rate with which the test is run is an important
factor at this temperature and shape and position of the individual

curve depend on it, Only the lowest strain rates yield a response

o4




which resembles neo-Hookean behavior up to strains of roughly 100%.
A threefold to fourfold increase in the stress is observed beyond
this point until failure occurs, For strain rates of 0.9 min—l and
greater the curves exhibit a constant slope up to about 30% strain
and more as the strain rate increases. This section of the stress-
strain curve could therefore be represented by a Mooney-Rivlin
equation with rate dependent constants., For strains greater than
ca. 65% the stresses increase sharply again and reach values at
failure which are several times larger than the stresses at strains
smaller than 65%.

The graphs which were just briefly discussed show that the
material cannot be represented by one of the classical constitutive
equations over the whole range of temperatures and strain rates
considered here. The increasing importance of rate effects as the
temperature decreases is evident by comparison of Figs, 14, 15

and 16.

3.2. Uniaxial Failure Data

The failure data to be discussed in this section were obtained
from uniaxial tension tests on ring specimens as they were described
in the previous section., Stresses and strains at failure were calcu-
lated in the same manner as employed there. Because of the
statistical nature of the failure process several tests were run
for each temperature and strain rate and the data points shown
in the graphs of this section represent the average value of four

or more individual tests.
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Figures 17 and 18 give, respectively, the failure strain and
failure stress at temperatures ranging from -12. 5°C to +40.0°C
as a function of strain rate. Both strain and stress at failure in-
crease considerably as the temperature decreases. The effect of
the strain rate on the failure strain is strongest for temperatures
above 0°C. On the other hand, the failure stress is more affected
by the strain rate if the temperatures are less than 20°C,

The master curve for the failure strain as shown in Fig. 19
results from shifting the curves of Fig. 17 along the abscissa until
a single continuous curve is obtained. The amount by which each
curve has to be shifted with respect to the curve for the reference
temperature determines the shift factor ap which will be discussed
in more detail in section 3.4.

It is seen from Fig. 19 that the failure strain conforms
well with the time-temperature shift principle. Other investigators
noted already that the stress at failure cannot be shifted as well
into a single master curve (54)., The same observation is made for
Solithane 50/50, Figure 20 shows the stress at failure shifted by
the same amounts as were necessary to produce a best fit master
curve for the failure strain. It can be seen that there is good agree-
ment at low strain rates but a considerable difference exists between
the shifted curves for various temperatures at high strain rates.

The so-called failure envelope, that is a plot of stress at
failure versus strain at failure, is shown in Fig. 21. Smith sug-
gested that this envelope is a unique property of a viscoelastic

material on the basis that it is independent of the deformation
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history (5 ). Although it has been demonstrated that the failure
envelope is not entirely independent of the loading history (55) a
plot of this kind minimizes the influence of strain history. The
failure envelope for Solithane 50/50 has the typical form for elasto-
mers. The strain rate of a constant temperature test increases

in counterclockwise direction. The failure strain goes through a

maximum of 225% as the test temperature decreases.

3.3. Relaxation Data and Creep Function

The creep function Dcr(t) plays an important role in visco-
elastic crack propagation as the relationships derived in part II
show. ZEquation (2.5-1) relates the Laplace transforms of the
relaxation modulus Erel(t) and of the creep function. The basis
of this relationship is a stress-strain law for uniaxial tension of

the following type

t
olt) = gErel(T)g%g—ﬂdT (3.3-1)
0
or
t
€lt) = ‘gDcr(T) 35’}") dr . (3.3-2)
0

If a step strain of magnitude €, is applied at time t = 0, equation

(3.3-1) reduces to

o(t) = €, E l('c) . (3.3-3)

re

Assuming the relaxation modulus to be known an integral equation

for the creep function is readily obtained by inversion of the Laplace
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transform of equation (2.5-1). This integral equation reads
gDcr(T) Erel(t—'r) dr=t . (3.3-4)

On the basis of equation (3.3-3) the relaxation modulus can
be relatively easily determined experimentally although a true step
strain history cannot be realized in an actual experiment. In our
case ring specimens were stretched to roughly 5% strain at a
constant rate of strain instead. The rise time necessary to reach
this strain level was on the order of half a second. A period of
5 times the rise time was allowed to pass by before data were taken.
The strain in the ring was calculated from an accurate measurement
of the pin displacement by means of a cathetometer. The load which
acted on the pins stretching the ring was recorded as a function of
time. The stress is based on the cross-section of the unstretched
ring. Knowing the time dependent uniaxial stress in the specimen
the relaxation modulus is immediately given by (3.3-3).

Relaxation curves for several temperatures are presented
in Fig. 22 as a function of time. The time scale spans roughly 3
decades which is about all that can be covered without making the
experiment too time consuming. The full relaxation curve can be
cbtained from the individual curves of Fig. 22 by application of the
time -temperature shift principle (56). Rather than employ the shift
factor ap as determined by the superposition of failure data we shall
shift the individual relaxation curves such as to produce a best fit
master relaxation curve and later compare the shift factors obtained

by the reduction of these two different sets of data.
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The master curve for the relaxation modulus is given in Fig,
23 for a reference temperature of 0°C. The data superpose well
into a single curve., The large difference in the order of magnitude
between the glassy and rubbery modulus should be noted. At a
temperature of 0°C the material reaches its long time equilibrium
state essentially within a tenth of a minute. An increase in tem-
perature reduces the relaxation time drastically as a look at the
time-temperature shift factor, aqs tells (cf. section 3.4
below).

Having determined the relaxation modulus experimentally
we can find the creep function by numerically solving the integral
equation (3.3-4). The method employed in this case is due to
Hopkins and Hamming (57). The result of this calculation is shown
in Fig. 24. For a comparison the function l/Erel(t) is included in
this graph. The two curves have practically the same shape. They
agree completely at long and short times and differ by at most

half a time decade at intermediate times.

3.4. The Time-Temperature Shift Factor

It was observed by several investigators that the curves
representing a certain time dependent response of a viscoelastic
material as measured at various temperatures could be superposed
into a single master curve by introducing a reduced time scale,
see references (58,59,60) among others. As we saw from the
presentation of failure data and relaxation data this so-called time-

temperature superposition principle is also well observed in the
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case of Solithane 50/50. The shift factor is denoted by ap and a

reduced time ted is defined by it in the following manner

-t
tred— 2 (3.4-1)

where t stands for the real time. The shift factor is always given
with respect to a reference temperature at which it assumes the
value 0. In the present investigation the reference temperature is
chosen to be Tref = 273°K. The shift factor is positive for temper-

atures smaller than Tref.and vice versa.

The shift factor for Solithane 50/50 is shown in Fig. 25.
Very good agreement between the values obtained by shifting differ-
ent sets of experimental data exists., The shift factors for swollen
Solithane 50/50 are of no interest in the context of this section and
will be interpreted later.

Williams, Landel, and Ferry found that the shift factor for
a great number of polymers is given by the following semi-empirical
equation (45)

-8.86 (T - Ts)

= (3.4-2)
101.8+ T - TS

LOG10 am

where the temperature T is expressed in degrees centigrade and
where TS is a temperature arbitrarily fixed to be 50°C above the
glass transition temperature Tg'

It is seen from Fig. 25 that in the temperature range from
-15°C to +25°C the experimental data for Solithane 50/50 are well
described by the WLF -equation with TS = 32°C. The latter corres-

ponds to a glass transition temperature of Tg = -18°C which is in
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very good agreement with the dilatometrically determined value of

-18.5°C for Solithane 50/50 (61).

3.5 Swelling Properties

The volume of crosslinked polymers is considerably in-
creased if the material is submerged in a suitable solvent. The
structure or mechanical integrity of the material remains unharmed
in the process. Only the sol, that is, uncrosslinked polymer chains
contained in the material, will be largely dissolved under the
influence of the solvent (62). The study of swelling properties
of polymers and of their mechanical behavior in this state allows
conclusions on their molecular structure and the calculation of net-
work characteristics. The effect on the mechanical behavior is
mainly a great reduction or even elimination of the rate dependence
of the material response. The reduced internal viscosity is the
motivation for our investigation of the properties of swollen Soli-
thane 50/50.

The first step in an experimental program of this kind is
the selection of a suitable swelling agent. The equilibrium swelling
properties of a substance are characterized by its solubility
parameter 6§ which is the square root of the cohesive energy density
(CED). The latter is defined as the energy required to separate
all the molecules of a substance from each other and is given by
the ratio of the molar heat of vaporization over the molar volume.
The solvents listed in Table II were selected as swelling agents

for equilibrium swelling experiments with Solithane 50/50, All of
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these solvents were poorly hydrogen bonded and together they span
a wide range of solubility parameters as can be seen from Table IL.

Small rectangular specimens were cut out of a sheet of cast
Solithane 50/50. Their dimensions were roughly 3/4"x1/4"x1/32".
Each specimen's length and weight were carefully measured with a
travelling microscope and laboratory scale, respectively. The
samples were then put in Petri dishes containing a particular solvent
and the length of each specimen was measured at increasing time
intervals. This measurement was again carried out with the help
of a travelling microscope and the specimen remained submerged
in the process. The experiment was performed at room temperature
of about 23°C, Figure 26 gives the results of these measurements
where the volume swelling ratio for two different swelling times is
plotted versus the solubility parameter of the solvents.

The typical swelling behavior with a maximum of the volume
increase for a particular solubility parameter is exhibited in this
figure., On the basis of these results it was concluded that the solu-
bility parameter for Solithane 50/50 is & = 9. 5Vcal/cm3. This value
is slightly less than the value of 6§ = 10,0 which is reported in
"Polymer Handbook" (63) for a Polyurethane rubber of unknown
composition.

Another distinct maximum was found to exist in a prelimi-
nary test in which there was no attention paid to the nature of the
solvents used as swelling agents. This maximum was located at
6 = 12.1 and the solvent was dimethylformamide, a moderately

hydrogen bonded solvent. It seemed the maximum was shifted
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towards higher values of the solubility parameter for this kind of
solvent. Not enough data for the swelling ratio in moderately, or
strongly hydrogen bonded solvents were collected, however, to
confirm this observation.

The time required to reach equilibrium conditions depends
of course on the volume of the dry specimen VO, on the swelling
agent, and on the temperature, For a volume of VO = 0.0068 in3
the equilibrium swelling time was less than 45 hrs. at 23°C for
all solvents employed here. Only one hour was necessary for
Toluene which has a low viscosity compared to other solvents.
The dynamic viscosity of Toluene is 0.583 cP at 20°C and 0.316
cP at 80°C.

On the basis of this experiment Toluene was chosen for the
further mechanical characterization of Solithane 50/50 in the
swollen state. Toluene has a solubility parameter of 6 = 8.9 which
is close enough to the same parameter for Solithane 50/50 to ensure
a high degree of swelling without making the swollen material too
difficult to handle as is the case at maximum swelling. The rela~
tively low viscosity of Toluene is also a point in its favor particu-
larly with regard to crack propagation tests. Furthermore it has
manageable hazardous properties in the temperature range of
interest here, that is in the range from -5°C to 50°C. Toluene
has a boiling point of 110. 8°C, a flash point of 4.5°C, and an
autoignition temperature of 552°C (64).

. After completion of the swelling measurements the samples

were put in a vacuum vessel and dried at 50°C for several days.
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This time was considered long enough to be sure that all solvent
rests had evaporated from the samples. They were then weighed
again and the sum of their weights was compared to the total weight
before swelling. This way the sol-fraction in Solithane 50/50 was
found to be 3.4 weight percent.

From the equilibrium swelling ratio and sol content together
with the number of elastically effective network chains, which will
be determined in the next section, we can calculate the polymer-
solvent interaction parameter p. This parameter is a measure of
the energy difference between a solvent molecule immersed in the
pure polymer and one which is surrounded by other solvent mole-
cules of the same kind (65). We employ the modified Flory-Rehner

equation for this calculation, which reads (66)

2
In(l - VZ) v, Ty,

(3.5-1)
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where v, = polymer volume fraction in the swollen sample,

V = molar volume of the swelling agent at test temperature,
g = volume fraction of gel rubber = 1.0,

p = polymer-solvent interaction parameter,

v‘e = elastically effective network chains in moles per unit

volume of unswollen polymer.
Inserting the known quantities into this equation yields for the
polymer-solvent interaction parameter of the Solithane 50/50-

Toluene combination the value p = 0.453,
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3.6. Mechanical Characterization of Swollen Solithane 50/50

Solithane 50/50 becomes very brittle when swollen in Toluene
and has to be handled with great care. Another experimental diffi-
culty arises from the fact that Toluene evaporates rapidly from the
surface of a swollen sample leading to the development of surface
cracks within a short time after the sample is removed from the
solvent bath. In order to circumvent these problems a tank device
cf. Fig. 27) was designed in which experiments on swollen speci-
mens could be run while the specimen is completely submerged
during the test.

The device consists of a tank the bottom of which is bolted
onto the cross-head of the Instron testing machine. Front and rear
walls of this tank are made of glass in order to be able to make
photographical observations, Inside the tank is mounted a spring
loaded, stainless steel jaw which holds the lower end of the speci-
men., The upper end of the specimen is held by a similar jaw which
is free to move vertically on ball bearings which are guided by two
stainless steel rods which are part of the tank structure, The
position of the ball bearings is adjustable and parallelism of the
jaws can be easily obtained by proper adjustment. The latter is
important for the performance of crack propagation experiments
in strip specimens which can be accommodated in the jaws up to
a length of 6". The top jaw is connected to the Instron load cell.
The arrangement just described allows the built-in load and dis-
placement recording mechanisms and various cross-head speeds

of the Instron tester to be used for experiments in the swollen state.
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About three gallons of Toluene are required to fill the tank.
The temperature of the Toluene can be easily changed within a cer-
tain range by installation of copper coils through which a cooled or
heated mixture of water and Ethyleneglycol is pumped. This way the
temperature can be varied from ca. -5°C to +50°C and can be kept
constant within +1°C at any desired level in this range.

Uniaxial Stress-Strain Behavior

We noted already in section 3.1 that the material response of
Solithane 50/50 cannot be described adequately by the neo-Hookean
or Mooney-Rivlin constitutive equation if the test temperature is about
equal to or less than 20°C. The experiments on which Figs. 14, 15
and 16 are based were repeated for swollen Solithane 50/50. Ring
specimens are not suitable under these conditions and dogbone
shaped specimens were used instead. These specimens were punched
out of cast sheets of 1/32" thickness. The cross-sectional area of
these specimens was 0.35" x 0,044" in the swollen state and their
effective length was experimentally determined and theoretically
estimated to be 2.59". Punched out specimens gave the best
surface smoothness compared to other techniques like milling or
cutting. The surface quality of the surfaces produced by the punch
was however not nearly as high as the quality of cast surfaces and
every specimen was visually inspected to sort out faulty pieces with
obvious surface defects,

The tests were run in the device just described at tempera-
tures of 420(3, 19OC, 4OC, and —ZOC, The strain varied from

0.0077to 7.7 min_l. Figs, 28-31 contain the results of these tests in
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the form of Mooney-Rivlin plots. Considering an experimental
accuracy of about #4% , which can be mainly contributed to friction
in the ball bearings guiding the upper jaw, one sees that the uniaxial
stress-strain behavior of swollen Solithane 50/50 is in good agree-
ment with classical rubber theory. In other words the swollen
material behaves neo-Hookean up to failure for all strain rates and
temperatures investigated here. No reasonable explanation can be
offered for the tendency of some data points, particularly at high
strain rates, to fall considerably below the best fit straight line
at small strains, that is for 1/\ close to unity. However it is be-
lieved that this effect is caused partly by some initial slack in the
recording mechanism which becomes noticeable at high extension
rates.

The remarkable feature of the behavior of swollen Solithane
50/50 under uniaxial tension as compared to the dry material is the
fact that it is completely independent of the strain rate although the
latter is changed by up to three decades. The data scatter does not
exhibit any particular trend except for the already mentioned devia-
tion at small strains. This result allows the conclusion that rate
dependent friction forces in the material are largely removed by
swelling. It also seems that the large discrepancy between classi-
cal theory and real response at temperatures equal to and less than
20°C is due to the presence of rate dependent mechanisms in the
material for which there is no allowance made by this theory. This
disagreement is hence not caused by some inherent defect of the

classical theory of rubber elasticity.
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The coefficient Cl appearing in equation (3.1-1) is given by

classical theory (46,65) to be

1
~ 1 1 3 -
CI_ZRTVGVZ (3.6-1)
where T = absolute temperature,
R = universal gas constant,

v'e = number of elastically effective network chains in
moles per unit volume of unswollen material,

o volume fraction of polymer in the swollen state.

According to equation (3.6-1) the coefficient Cl is directly propor-

tional to the absolute temperature. The following values for the

quotient Cl/T were calculated from the data presented in Figs.

28"31)
| Cy/T
°K psi/OK
R
271 0.245
278 0.244
p +0.01
292 0.247
315 0.254 |

The factor C, increases slightly more with increasing temperature

1
than is predicted by the classical theory. Compared to the tempera-
ture dependence of the response of unswollen Solithane the agreement
is very good, however,

Assuming a value of 0.25 psi/OK for CI/T’ which corres-

ponds roughly to a temperature of 23°C and a Young's modulus for
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small strains of 444 psi, one can calculate the number of elastically
effective network chains from equation (3.6-1). This calculation
yields vé =5,78 x 10_4 moles per milliliter of unswollen Solithane
50/50.

Failure Data

A collection of average strains at failure of swollen Solithane
50/50 under uniaxial tension is given in Fig. 32. The strain is based
on the dimensions of the unswollen, unstretched specimen in this case
in order to make the comparison with similar data in the unswollen
state easier. Each point in this plot represents the average of three
or more tests. The dataare rather widely scattered and only a slight
trend towards higher failure strains can be detected as the strain
rate increases in spite of the change of the latter by a factor of 1000,
This behavior is the same for the three temperatures for which
failure data were collected and underlines the practically complete
absence of rate effects in the swollen state which was already ob-
served in the stress-strain relationship. A comparison of Fig. 32
with Fig., 17 again reveals the striking difference between swollen
and dry Solithane 50/50 with respect to the rate dependence.

Figure 33 is a plot of the stress at failure versus A - )\—2
at failure. The data points are in this case closely and evenly scat-
tered around a straight line with a slope of 137 psi. The slope is
equal to ZC1 and the reference temperature is T = 273°K. The
quotient Cl/T as calculated from this plet is hence C1 /T = 0.2507
psi/oK which is in good agreement with the value as obtained previ-

ously from stress-strain curves. This figure confirms the statement
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which was already made at an earlier point that swollen Solithane
50/50 behaves up to failure like a neo-Hookean material,

3.7 Crack Propagation and Surface Energy

The fracture criterion (2.6-3) establishes a relationship be-
tween the surface energy S and basic material parameters which can
be directly determined by experiment. The important factor in this
equation is the critical load S0 c

or critical strain eoc , respec-

rit rit
tively. In order to measure either of these two values accurately

the load factor n, cf. section 2.6, should be unity. The initial crack
becomes theoretically unstable at this point and begins to propagate.
For materials without substantial dissipation the point of instability
is easily recognized in an experiment because the crack extends
rapidly once it becomes unstable. For highly viscoelastic materials
on the other hand the speeds of crack propagation can be extremely
low and the minimum stress or strain necessary to make the transi-
tion from a stable to an unstable crack possible is difficult to define.
Figure 37, which shows crack propagation speeds for Solithane 50/50
in a narrow strip as a function of applied gross strain €, illustrates
this situation. Imagine the solid curves to be erased in this plot.

One is then tempted to draw straight lines through the experimental
data. From these straight lines one then concludes that even

smaller rates of propagation could be obtained if one could muster
enough patience upon lowering the strain further. There thus appears
to be no obvious lower bound for the critical strain,

In order to take some of the uncertainty out of the experi-

mental determination of the surface energy of a highly viscoelastic
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material use was made of the fact that the internal viscosity of the
material is largely removed in the swollen state (cf. section 3.6).
The material behaves like a brittle material under these conditions
and the point of crack instability is better defined. The energy S
which is required to break the bonds penetrating a unit area is as-
sumed to be unaffected by the presence of the swelling agent. The
only difference is then a reduction in the number of bonds per unit
area which is caused by swelling the material.

The geometry which was chosen for the experimental deter-
mination of the surface energy under these conditions was a narrow
strip of 5 1/2"" length, 1'' width, and 0.045'"" thickness in the swollen
state. A crack of 1'' length was cut along the center line at one of
the narrow edges of the strip. The ratio of crack length to strip
width is large enough so that the stress field around the crack tip
is equal to that of an infinitely long strip with semi-infinite crack
(19). The specimens were prepared completely in the dry state and
then put in a Toluene bath for a day or longer before the tests were
run in the device described above. The test consisted of displacing
the strip edges with a constant rate until the initial crack became
unstable, Load and displacement were measured in the process
with the help of the built-in Instron recorders.

The point of crack instability manifested itself as a sharp
break in the load-displacement curve. There was no ambiguity in
the definition of this point on the graph. The displacement of the
strip edge was on the order of only 0.02'" and an independent meas-

urement of this quantity was carried out as a check on the Instron
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measurement and on the parallelity of the two jaws. The displace-
ments at both ends of the jaws were measured with the aid of two
linearly variable transformers. There was consistent agreement
between all values for the displacement.

Speed of Crack Propagation

Solithane 113 is a very transparent material and especially
in the swollen state it can hardly be distinguished from the Toluene
surrounding it. Polarized light was therefore used to make the crack
tip visible. Only one fringe formed at this point because of the low
overall strain level and because of the small sheet thickness. This
was no disadvantage, however, because the fringe was only used to
mark the position of the crack tip. The time history of this position
was recorded on film by means of a Magnifax high speed motion
picture camera with a maximum frame rate of about 3200 frames/sec.
The film speed could be accurately determined with the help of timing
marks on the film and the crack propagation speed was readily cal-
culated from the knowledge of crack tip position and elapsed time.

After the crack passed through an acceleration stage of
varying length it propagated at constant speed until it came into the
vicinity of the opposite specimen edge. The length of the accelera-
tion period depended on the test temperature and the strain at which
the crack became unstable. Increasing temperatures or strains
shortened the acceleration time which was about 400 msec long for
a temperature of 4°C and a strain of 2.15%. For the highest test
temperature of 42°C the acceleration period was extremely short

and hardly recognizable.
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In Fig. 34 the gross strain €, on the strip is shown in relation
to the constant crack propagation speed v at the end of the accelera-
tion period. A comparison of this plot with Fig. 37 which contains
corresponding data for unswollen Solithane 50/50 shows that the speed
of propagation is orders of magnitude higher in the swollen material
and a lower bound of the critical gross strain €5 crit. will therefore
be easier to define,

The curves drawn through the isothermal data points of Fig.
34 have the same shape and can be superposed by shifting them along
the abscissa., The shift factor resulting from this operation is
plotted in Fig. 25, It is orders of magnitude smaller than the shift

factor for the dry material.

Surface Energy

For the calculation of the surface energy S via the fracture
criterion (2.6-3) we are interested in the lowest strain which has to
be put on a strip specimen in order to make an initial crack unstable,
We eliminated one of the reasons which complicated the definition of
a lower bound of this critical strain by swelling the material. There
is however another factor which causes some variation in the magni-
tude of the experimentally determined strain at the point of instabil-

ity. This variation is caused by the uncertain microscopical shape

* The fact that the shift factor does not vanish completely in the
swollen state indicates that the internal viscosity is not entirely
removed by swelling, The great difference in the value for the

shift factor in the swollen and dry material, however, verifies

the large reduction in internal viscosity which was already con-
cluded from other experimental data (cf., section 3.6).
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of the crack tip. The fracture criterion (2.6-3) was derived for a
mathematically sharp crack which can be only approximately realized
by cutting the material with a tool of finite dimensions. The actual
stress intensity factor is therefore smaller than the theoretically
calculated value and the critical strain is in turn higher than in the
ideal case. Apart from possible defects which were already in the
material or which were introduced by cutting the material the critical
strain for an ideal crack is thus given by the lower bound of the
critical strains measured in a series of experiments.

A collection of gross strains €, on the strip as measured at
the point of instability is given in Fig. 35. The tests were run at
different temperatures and strain rates and a slight tendency towards
higher €, with increasing strain rate is apparent in this figure. The
temperature on the other hand does not seem to have any effect on

EO.

Discarding the very lowest recorded strains as possibly
caused by faulty specimens we place the lower bound at €0 crit
0.0175. A large number of points falls right on this mark or only
slightly above it. Knowing the stress-strain relationship which is
independent of time for the swollen material we can calculate the
critical load from this information and obtain the surface energy via
the fracture criterion.

The fracture criterion as given by equation (2.6-3) was
derived by considering a strip with sheariree edges, However in

order to adjust this criterion to the clamped edges of the experi-

mental geometry we only have to insert the proper value for the
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stress intensity factor. It can be easily shown (43) that the stress
intensity factor for a semi-infinite crack in a strip with clamped
edges differs only by a factor of (1 —vz) from the intensity factor for
a strip with the same dimensions but shearfree edges. For a tem-
perature of 273°K the fracture criterion for our experimental

situation then reads

Oocrit:EEocr't: VJ—S_?— y (3.7-1)
. b(l-v7)

The material behavior of a neo-Hookean material under
uniaxial stress is adequately described for small strains by a Young's
modulus which is equal to E = 6 Cl' In the case of swollen Solithane

50/50 we thus find E = 402 psi for 0°C. The strip width is 2b = 1"

st
R

and Poisson's ratio is assumed to be v = 0,5,
Substituting all known quantities we can solve equation (3.7-1)

for S. The resultis S = 2.31 x 10_2 lbs per inch of the swollen

"The assumption of incompressibility in the swollen state is not

as poor as it appears to be at first sight. Classical rubber theory
(46) shows that a strained body can actually absorb more liquid

than the unstrained body at the same temperature. The diffusion
process involved in reaching a new swelling equilibrium requires
however considerably more time than the 20 sec which were neces-
sary to stretch the strip up to the point of crack instability. In order
to check this behavior swollen dogbone shaped specimens were held
at a constant strain of ca. 3% and the decrease in the load required
to maintain this strain was observed. The time which elapsed until
a new equilibrium state was reached and the amount of stress re-
laxation were essentially independent of temperature, This behavior
was attributed to a slow increase in volume due to additional swelling
in the strained state. About 30 minutes were necessary to reach

the new swelling equilibrium although the volume of the dogbone
shaped specimen was only about 25% of the volume of the strip speci-
men used for crack propagation tests.
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material. Taking the linear swelling ratio of 1.39 for the Solithane
50/50-Toluene combination into account we obtain the following value

for the surface energy of dry Solithane 50/50
S=3.21 x 102 1bs/in.

This value is about an order of magnitude larger than the value for
glass. Griffith (6) reports for the latter an extrapolated value of
0.31 x 1072 1bs/in at room temperature.

All material properties entering the relationships derived in
part Il are now determined except for the characteristic length Aa.
Since we are not absolutely sure about the physical interpretation of
this length (cf, part IV) we have no other choice but to wait until
theory and experiment are to be compared and then find the value of
Aa which gives the best agreement, This comparison is the subject

of part IV,
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IVv. COMPARISON BETWEEN THEORY AND EXPERIMENT

Experimental Data

Knauss (22, 67) measured equilibrium crack propagation
speeds for Solithane 50/50 in strip specimens. The latter had a
thickness of 0.1'"', a width of 1 3/8'", and a length of about 10'", An
initial crack of ca. 1 1/2'" was cut along the strip center line at one
of the narrow edges. The stress field around the crack tip was
thus ensured to be essentially independent of the crack length and
a constant rate of crack extension could be expected as soon as the
gross strain €5 applied on the specimen was greater than the critical
strain, The strain €, was reached in an almost stepwise manner
within 15 msec and was held constant thereafter. The stable speed
of crack propagation for a particular €, was unaffected by the
strain history leading to €, 2as the results of similar experiments
with a small, constant strain rate for € < €, have shown., The ex-
perimental data shown in Fig. 37 are the result of these measure-
ments and were taken from references (22, 67)., This graph gives
the stable speed of crack propagation v as a function of applied
strain €, and of the test temperature T.

Without any theory available at the time when these tests
were performed the experimental results seemed to suggest that
there is a power law relationship between velocity and gross strain,

that is (22)
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E m

v~ exp(- kT) (Eo ™ crit)
where k = Boltzmann's constant
E = a characteristic energy
m = a dimensionless number = 0,3.

Although this empirical relationship yields a good agreement with
the experimental data we shall see that it may not be the correct
theoretical interpretation of these measurements.

The change of speed of propagation v over several decades
depending on the magnitude of the applied strain should be noted.
Also, the similar shape of the curves which could be drawn through
isothermal data points suggests the applicability of the time-
temperature superposition principle. The shift factor ag as ob-
tained by shifting these curves in the familiar way into a single
master curve is plotted in Fig. 25. It is seen that it conforms
well with the shift factors determined by superposing other ex-
perimental data,

Theoretical Relationship between Velocity, Strain, and Temperature

for Solithane 50/50

Equation (2.6-2) which was derived in part II of this thesis
gives the speed of crack propagation implicitly as a function of the
gross strain €, = Oo/Er and of the material properties. This rela-
tion was derived for a strip with shearfree edges but it is assumed
to hold in the case of clamped strip edges as well if the appropriate

value for the stress intensity factor Kn is inserted. For an infinitely
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long, clamped strip containing a semi-~infinite crack the stress inten-
sity factor is (24) Kn = ‘ (1 - vz)/27r . As mentioned previously the
experimental crack length over strip width ratio was chosen large
enough to make the stress field around the crack tip essentially equal
to the one around the tip of a semi-infinite crack, cf., reference (23).

Equation (2.6-2) modified for our experimental situation thus reads

(a):T 2

1
(4-2)
cr varg 273 EZEZ 2
r o

oln

(1 -v7)

The two equations, (2.6-6) and (2.6-7), are unaffected by the change
from shearfree to clamped edges because they do not involve the
stress intensity factor.

We recall that equation (4-2) is the energy conservation equa-
tion (2.1-5) for our particular geometry. The two sides of this
equation, that is the rate of change of the crack energy E'C and the
rate of change of the surface energy ].DS, are plotted in Fig. 36 for
Solithane 50/50 as a function of crack speed v and load factor n.
This plot is valid for a temperature of 273°K but similar plots for
other temperatures are readily obtained by application of the time-
temperature superposition principle.

The material properties of Solithane 50/50 as discussed in
part III were used for the calculation of the curves in Fig. 36, The
characteristic length Aa was taken to be equal to 10~8 inches. This
value yields the best agreement between theoretical prediction and
experimental result as we shall soon see. The order of magnitude

of the characteristic length seems to be too small to be acceptable
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for a continuum theory. Instead of trying to give this length some
direct physical meaning it might therefore be more correct to inter-
pret it in connection with some wave speed c of the material. A

characteristic time t = Aa/c would then have to be considered

char.
as the new material property. Possibly Aa has to be interpreted as
the thickness of a filament at the crack tip which is essentially under
uniaxial tension and which breaks abruptly once a certain critical
condition is reached. On a microscopic scale the crack would then
have to be pictured as propagating in a stepwise manner from fila-
ment to {ilament each of which is stretched with a rate which is
directly proportional to the macroscopic rate of crack propagation.
The idea that there is a region of constant tensile stress at the very
crack tip has already been suggested by Williams, Blatz, and
Schapery and a theory of crack propagation in a Voigt solid has
been worked out on this hypothesis (68). Bueche and Halpin (20)
utilized the same idea to develop a molecular theory for the tensile
strength of elastomers., They make the statement that this filament
is very thin and measures perhaps 1 to 100 2. The value of Aa =
2.5 & falls right into the range suggested by them intuitively. In the
course of development of the Bueche-Halpin theory the thickness of
this filament is absorbed in some other constant which is determined
by finding the value which gives the best agreement between theory
and experiment.

The rate of change of the surface energy is represented by
the solid line of constant slope in Fig. 36. The broken curves depict

the rate of change of the crack energy for various load factors n.
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The non-trivial solution of the energy conservation equation which
yields the stable crack propagation speed for a certain load factor is
given by the intersection of the solid line with the appropriate broken
curve. This graph illustrates how strongly the speed of propagation
depends ou the load factor, that is on the applied strain €, in our case.
An increase of the latter by a factor of ten involves a theoretical
change in crack speed by a factor of about 105. It is also seen that

the two curves become tangent as the load factor approaches n = 1.
They do not intersect for n < 1, in other words the crack is stable
under these circumstances and does not propagate at all. As the load
factor becomes large the two curves become tangent again. For load
factors greater than the value corresponding to this situation the crack
propagates theoretically in a material with Young's modulus equal to
Eg' The creep behavior of the material is of no importance any more
in this case and the crack will accelerate up to a velocity at which
inertia effects control the crack propagation process.,

Instead of the graphical solution just discussed we can solve
equation (4-2) directly for the strain €, if the velocity v is given.
Equilibrium crack propagation speeds calculated in this manner are
shown in Fig. 37 as a function of applied strain and temperature.

The temperatures range from 0°C to 50°C and the corresponding
experimental data are included in this plot. The agreement between
theoretical and experimental results is very good except for the
lowest temperature. The value of the creep function at very short
times is important in this case which in turn is dependent on the

relaxation modulus for very short times. The latter is difficult to
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determine accurately by experiment, however, and the greater dis-

agreement between crack propagation theory and experiment might

be attributed to this difficulty.

Figure 38 contains the same experimental data in the form
of a master curve at temperature T = 273°K. This data reduction
is readily accomplished by application of equation (2.6-7). This
graph shows very good agreement between experimental evidence
and theoretical expectation over the whole range of crack velocities
of about 6 decades.

The agreement between theory and experiment is surprisingly
good considering the fact that the derivation of the theoretical rela-
tionships was based on the linear theory of elasticity and that the
problem was idealized to be two-dimensional.

Conclusions‘

The important points may now be summarized as follows:

1. The relationships given in section 2.6 describe the typical
features of slow, stable crack propagation in a strip of visco-
elastic material.

2. Except for the so-called characteristic length Aa all material
properties entering these relationships are obtained from
tests other than crack propagation tests.

3. An additional material property which is called characteristic
length Aa is necessary to describe the crack propagation pro-
cess in a time dependent material. This length may be inter-
preted as the thickness of a filament which is essentially in a

state of uniaxial tension at the tip of the crack.
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The creep function (i.e., the viscous energy dissipation in the
material) controls the crack propagation speed in a viscoelastic
material.

The applicability of the time-temperature superposition prin-
ciple to viscoelastic crack propagation data is theoretically

and experimentally verified. The shift factor is the same as
the shift factor for other time dependent material responses.
The shorter the relaxation process is in a material the higher the
crack propagation speed has to be in order to be affected by

the time dependent material properties. Materials which do
not exhibit any measurable rate dependence at normal labora-
tory loading rates may have an extremely short relaxation
time, which is brought out only at high crack speeds with cor -
respondingly high loading rates at the crack tip, Viscous dis-
sipation may then come into play and cause a limiting crack
velocity which is smaller than the one which could be expected

if inertia forces alone controlled the process.
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FIG. | STRIP GEOMETRY

FIG.2 CONTROL VOLUME
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FIG.27 DEVICE FOR THE MECHANICAL CHARACTERIZATION OF

SWOLLEN SOLITHANE
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Numerical
Solution

1.
1.
1.
1.
1.
0.
0.
0,
0.
0.
0,
0,
0.
0.
0.
0.
0.

Oo

Table I

Z(1) as a function of a/b.

2533
2381
1957
1341
0627
9896
9204
8579
8030
7555
7146
6794
6489
6223
5989
5781
5

4082
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Asymptotic
Solution
Eq. (2.3-21)
1.2533
1.2381
1.196
1.1364
1.0752
1,0256

0.9838

1

1

1

1.

0

0

0

0

0

0

0

0

0

0

0.

0

. 5811
.291

.1180

0

9126
. 8452
. 7906
. 1454
. 7071
6742
. 6455
. 6202
.5976

5774

5

.4082




Name

n-pentane
n-hexane
n-heptane
Methylcyclohexane
Cyclohexane
Carbontetrachloride
Toluene

Benzene
Chlorobenzene
o-dichlorobenzene
1 -bromonaphtaline
Methylcellosolve
Acetronitrile

Nitromethane

Table I1

Swelling Agents
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Solubility parameter
Ref, (63)
ey
cal/cm
7.0
7.3

7.4

9.2
9.5
10.0
10.6
10.8
11.8

12.7
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